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Notational preliminaries

Suppose {pθ : θ ∈ Θ} is a parametric family, with Θ ⊂ Rk.

We will be interested in discrete probability measures of the form

q =

∞∑
i=1

πiδθi

where θ1, θ2, . . . ∈ Θ and δθ is the unit point mass at θ ∈ Θ.

Let fq denote the density of the resulting mixture, that is,

fq(x) =

∫
Θ
pθ(x) dq(θ) =

∞∑
i=1

πipθi(x).

Let s(q) = | support(q)| ∈ {1, 2, . . . } ∪ {∞}.
Assume identifiability in the sense that fq = fq′ ⇒ q = q′

for any q, q′ with finite support.
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Notational preliminaries

q =
∑∞

i=1 πiδθi (mixing distribution)
fq(x) =

∑
πipθi(x) (density)

s(q) = | support(q)| (number of components)

For example, {pθ : θ ∈ Θ} might be univariate normals with θ = (µ, σ2).
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Two distributions

Notation: q =
∑∞

i=1 πiδθi , fq(x) =
∑
πipθi(x), s(q) = | support(q)|.

Data distribution (the “true” distribution)

X1, X2, . . .
iid∼ fq0 for some q0 with s(q0) <∞.

Model distribution

Q ∼ some prior on discrete measures q,

X1, X2, . . .
iid∼ fQ (given Q).

Model distribution (equivalent formulation)

Q ∼ some prior on discrete measures q,

β1, β2, . . .
iid∼ Q (given Q),

Xi ∼ pβi (given Q, β1, β2, . . . ) indep. for i = 1, 2, . . . .

n

Q

βi

Xi

Let Tn = #{β1, . . . , βn} (i.e. number of distinct components so far).

J. W. Miller (Brown University) DPM inconsistency ICERM, September 17, 2012 6 / 40



Introduction A consistent alternative Demonstrations Results Examples MFM Properties Open questions

Two distributions

Notation: q =
∑∞

i=1 πiδθi , fq(x) =
∑
πipθi(x), s(q) = | support(q)|.

Data distribution (the “true” distribution)

X1, X2, . . .
iid∼ fq0 for some q0 with s(q0) <∞.

Model distribution

Q ∼ some prior on discrete measures q,

X1, X2, . . .
iid∼ fQ (given Q).

Model distribution (equivalent formulation)

Q ∼ some prior on discrete measures q,

β1, β2, . . .
iid∼ Q (given Q),

Xi ∼ pβi (given Q, β1, β2, . . . ) indep. for i = 1, 2, . . . .

n

Q

βi

Xi

Let Tn = #{β1, . . . , βn} (i.e. number of distinct components so far).

J. W. Miller (Brown University) DPM inconsistency ICERM, September 17, 2012 6 / 40



Introduction A consistent alternative Demonstrations Results Examples MFM Properties Open questions

Many possible questions

Data: X1, X2, . . .
iid∼ fq0 . Write X1:n = (X1, . . . , Xn).

Model: Q ∼ prior, βi
iid∼ Q, Xi ∼ pβi , and Tn = #{β1, . . . , βn}.

Is the posterior consistent (and at what rate of convergence) . . .

1 . . . for the density?

i.e. Pmodel(dist(fQ, fq0) < ε |X1:n)
Pdata−−−→
n→∞

1 ∀ε > 0?

(Also, does this hold at any sufficiently smooth density,
even when it is not a mixture from {pθ : θ ∈ Θ}?)

2 . . . for the mixing distribution?

i.e. Pmodel(dist(Q, q0) < ε |X1:n)
Pdata−−−→
n→∞

1 ∀ε > 0?

3 . . . for the number of components?

i.e. Pmodel(Tn = s(q0) |X1:n)
Pdata−−−→
n→∞

1?

(Note: We use Tn instead of s(Q) since s(Q)
a.s.
= ∞ in a DPM.)
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Answers for Dirichlet process mixtures (DPMs)

In a DPM, Q ∼ DP(αH).
Is the posterior consistent (and at what rate of convergence). . .

DPMs

. . . for the density? Yes (optimal rate)

(Ghosal & van der Vaart 2001, 2007)

This holds for any sufficiently smooth density (in a certain sense).

Contributions also by: Lijoi, Prünster, Walker, James, Tokdar, Dunson, Bhattacharya,
Ghosh, Ramamoorthi, Wu, Khazaei, Rousseau, Balabdaoui, Tang

. . . for the mixing distribution? Yes (optimal rate)

(Nguyen 2012)

. . . for the number of components? Not consistent

(Note: Ignoring tiny components when computing Tn might fix this issue.)
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Mixture of finite mixtures (MFM)

Many authors have considered the following natural alternative to DPMs.

e.g. Nobile (1994, 2000, 2004, 2005, 2007), Richardson & Green (1997, 2001), Stephens (2000),

Zhang et al. (2004), Kruijer (2008), Rousseau (2010), Kruijer, Rousseau, & van der Vaart (2010).

Instead of Q ∼ DP(αH), choose Q as follows:

A mixture over finite mixtures

S ∼ p(s), a p.m.f. on {1, 2, . . . }
π ∼ Dirichlet(αs1, . . . , αss) (given S = s)

θ1, . . . , θs
iid∼ H (given S = s)

Q =
∑S

i=1 πiδθi n

S π

θ Q Xi

For mathematical convenience, we suggest:

H as a conjugate prior for {pθ}
p(s) = Poisson(s− 1 |λ)
αij = α > 0 for all i, j
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Answers for MFM models

Is the posterior consistent (and at what rate of convergence). . .

DPMs MFMs

. . . for the density? Yes (optimal rate) Yes (optimal rate)

Doob’s theorem gives consistency at Lebesgue almost-all mixing distributions q0.
For any sufficiently smooth density, convergence at the optimal rate was proven by Kruijer
(2008) and Kruijer, Rousseau, & van der Vaart (2010) (in the same sense as for DPMs).

. . . for the mixing distribution? Yes (optimal rate) Yes

Doob’s theorem guarantees consistency, as before. Optimal rate?

. . . for the number of components? Not consistent Yes

By Doob’s theorem, again.
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Toy example #1: One normal component

Prior (x) and estimated posterior (o) of Tn

Data: N (0, 1). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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Toy example #2: Two normal components

Prior (x) and estimated posterior (o) of Tn

Data: 1
2
N (0, 1) + 1

2
N (6, 1). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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Toy example #3: Five normal components
Prior (x) and estimated posterior (o) of Tn

Data:
2∑

k=−2

1
5
N (4k, 1

2
). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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Inconsistency results

Theorem (Exponential families)

If:

{pθ : θ ∈ Θ} is an exponential family,

the base measure H is a conjugate prior, and

the concentration parameter α > 0 is any fixed value,

then for any “true” mixing distribution q0 with s(q0) <∞, the DPM
posterior on Tn is not consistent, that is, PDPM(Tn = s(q0) |X1:n) does not
converge to 1.

Remarks:

To be precise, the theorem applies to any regular full-rank exponential family in natural
form, where Θ is the natural parameter space.

For instance, this covers: multivariate Gaussian, Gamma, Poisson, Exponential,
Geometric, Laplace, and others.
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Inconsistency results

“Standard normal DPM”: pθ(x) = N (x | θ, 1) and H is N (0, 1).

Theorem (Prior on the concentration parameter)

For a standard normal DPM, this inconsistency remains when the
concentration parameter α is given a Gamma prior.

Theorem (The posterior can be “badly” inconsistent)

If X1, X2, . . .
iid∼ N (0, 1) (i.e. there is one standard normal component),

then
PDPM(Tn = 1 |X1:n)

Pr−−−→
n→∞

0

under a standard normal DPM with any fixed value of α > 0.

We conjecture that more generally: for data from any sufficiently regular density,

PDPM(Tn = t |X1:n)→ 0 for all t.
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The wrong intuition

It is tempting to think that the prior on Tn is the culprit.
After all, when e.g. α = 1,

PDPM(Tn = t) =
1

n!

[
n
t

]
∼ 1

n

(log n)t−1

(t− 1)!
= Poisson(t− 1| log n)

where
[
n
t

]
is an (unsigned) Stirling number of the first kind, and an ∼ bn means

that an/bn → 1 as n→∞. Hence, PDPM(Tn = t)→ 0 for any t.

PDPM(Tn = t) for increasing n

However, this is not the fundamental reason why inconsistency occurs. Even if we
replace the prior on Tn by something that is not diverging, inconsistency remains!
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Replacing the prior on Tn doesn’t fix the problem

For each n = 1, 2, . . . let pn(t) be a p.m.f. on {1, . . . , n}.
Define the “tilted” model:

PTILT(X1:n, Tn = t) = PDPM(X1:n |Tn = t) pn(t).

Call the sequence pn “non-degenerate” if for all t = 1, 2, . . . ,

lim inf
n→∞

pn(t) > 0.

Theorem (Tilted models)

For any non-degenerate sequence pn, under the tilted model PTILT based
on the standard normal DPM, the posterior of Tn is not consistent.

(Recall “Standard normal DPM”: pθ(x) = N (x | θ, 1) and H is N (0, 1).)
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The right intuition

Let A = (A1, . . . , At) be an ordered partition of {1, . . . , n}.
Let K = (K1, . . . ,Kt) where Ki = |Ai| and assume K1, . . . ,Kt > 0
(e.g. A = ({3, 5}, {1}, {2, 4, 6}), K = (2, 1, 3)).

The distributions over A and K|Tn = t in a DPM are

PDPM(A) =
1

n! t!

t∏
i=1

(Ki − 1)! and PDPM(K = k|Tn = t) ∝ 1

k1 · · · kt
.

This distribution heavily favors partitions with many small k’s.

It turns out that the likelihood is not strong enough to overcome this
effect — the likelihood “does not mind” adding tiny superfluous parts.
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The right intuition

If the likelihood “does not mind” adding tiny superfluous parts, then how is
it possible for MFM models to be consistent?
The answer is that MFM models put negligible prior mass on such partitions.

PMFM(k|Tn = t) ∝∼ kα−11 · · · kα−1t

PMFM(K1 ≤ nε |Tn = 2) −−−−→
n→∞

0

PMFM(k1 |Tn = 2)

PDPM(k|Tn = t) ∝ k−11 · · · k
−1
t

PDPM(K1 ≤ nε |Tn = 2) −−−−→
n→∞

ε/2

PDPM(k1 |Tn = 2)
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Appropriate and inappropriate usage of DPMs

Appropriate usage:

for density estimation
(. . . and not for inferences about the number of components)

or

for data assumed to come from a DPM
(. . . and in particular, there are infinitely many components)

(A possible example here is topic models.)

Inappropriate usage:

for inferences about the number of components in a finite mixture

(Many publications use DPMs in this manner.)
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Applications that may be problematic, in retrospect

Population structure / species delimitation
In population genetics, an important problem is identification of
subpopulations of organisms.

For example, geographic barriers divide populations and genetic drift occurs.

DPMs are being used to infer the number of groups:
Proposals to use DPMs

Huelsenbeck & Andolfatto (2007) — 134 citations (as of 9/7/2012)
Pella & Masuda (2006) — 54 citations (as of 9/7/2012)

Popular software package

“Structurama” — Huelsenbeck, Andolfatto, & Huelsenbeck (2011)

Methods using DPMs

Onogi, Nurimoto, & Morita (2011)
Fogelqvist, Niittyvuopio, Agren, Savolainen, & Ascoux (2010)
Hausdorf & Hennig (2010)

Applications to real-world scientific problems

West African forest geckos — Leaché & Fujita (2010)
Sardines — Gonzales & Zardoya (2007)
Avocados — Chen, Morrell, Ashworth, de la Cruz, & Clegg (2009)
Apples — Richards, Volk, Reilley, Henk, Lockwood, Reeves, & Forsline (2009)
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Applications that may be problematic, in retrospect

Haplotype inference and founder estimation
Xing, Sohn, Jordan, & Teh (2006)

Network communities
Baskerville, Dobson, Bedford, Allesina, Anderson, & Pascual (2011)

Epidemiology
Choi, Lawson, Cai & Hossain (2011)

Heterotachy (i.e. mutation rates in phylogenetic trees)
Lartillot & Philippe (2004)

Rodrigue, Philippe, & Lartillot (2008)

Zhou, Brinkmann, Rodrigue, Lartillot, & Philippe (2010)

Huelsenbeck, Jain, Frost, & Pond (2006)

Gene expression profiling
Medvedovic & Sivaganesan (2002)

Qin (2006)

Rasmussen, de la Cruz, Ghahramani, & Wild (2009)
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Mixture of finite mixtures (MFM)

Recall:

MFM model (Poisson case)

S ∼ Poisson(λ) + 1
π ∼ Dirichlets(α, . . . , α) (given S = s)

θ1, . . . , θs
iid∼ H (given S = s)

Q =
∑S

i=1 πiδθi

X1, X2, . . .
iid∼ fQ (given Q). n

S π

θ Q Xi
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MFMs vs DPMs

Similarities between MFMs and DPMs:
Efficient approximate inference (via Gibbs sampling)
Appealing equivalent formulations:

exchangeable distribution on partitions
restaurant process
stick-breaking
random discrete measures

Consistent for any sufficiently smooth density
(at the optimal rate, in a certain sense)

Advantages of MFMs (vs DPMs) (for data from a finite mixture):

MFMs are a natural Bayesian extension of finite mixtures.
Consistency (a.e.) for S, π, θ, and fQ is automatically guaranteed
under very general conditions (by Doob’s theorem).

Disadvantages of MFMs (vs DPMs):
More parameters (. . . you have to choose p(s))
(Slightly) more complicated sampling formulas
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Properties of MFMs

For clarity, set α = 1 in both MFM and DPM.

Exchangeable distribution on partitions (MFM vs DPM)

Let C be an (unordered) partition of {1, . . . , n} into t parts
(e.g. C = {{3, 5}, {1}, {2, 4, 6}}). Then

PMFM(C) = κ(n, t)
∏
c∈C
|c|! PDPM(C) =

1

n!

∏
c∈C

(|c| − 1)!

where κ(n, t) = E(S(t)/S
(n)).

Here, s(t) = s(s− 1) · · · (s− t+ 1) and s(n) = s(s+ 1) · · · (s+ n− 1).

The numbers κ(n, t) can be efficiently precomputed using
κ(n, t) = κ(n− 1, t− 1)− (n+ t− 2)κ(n, t− 1), and
κ(n, 0) = E(1/S(n)) = P (S > n)/λn

(the last equality holding only in the Poisson case).
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Properties of MFMs

This leads to a simple “restaurant process” closely resembling the CRP:

Restaurant process (MFM vs DPM)

The first customer sits at a table. (At this point, C = {{1}}.)
The nth customer sits. . .

MFM DPM
at table c ∈ C with probability ∝ (|c|+ 1)κ(n, t) |c|

or at a new table with probability ∝ κ(n, t+ 1) 1

where t = |C| is the number of occupied tables so far.

This is easily verified using the recursion for κ(n, t).

This yields a simple Gibbs sampling scheme . . .
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Approximate inference with MCMC

Gibbs sampling for MFMs is nearly identical to Gibbs sampling for DPMs.

Sampling from P (C|x1:n) ∝ P (x1:n|C)P (C) proceeds as follows.

Let µ(C) = P (x1:n|C). (This is the same for both models.)

Gibbs sampling (MFM vs DPM)

Suppose C is the current partition, not including customer k.
Reseat customer k...

MFM DPM
at table c ∈ C with probability ∝ (|c|+ 1)κ(n, t)µ(Cc) |c|µ(Cc)

or at a new table with probability ∝ κ(n, t+ 1)µ(C∗) µ(C∗)

where

t = |C| is the number of occupied tables (excluding customer k),
Cc is the partition formed by assigning k to table c, and
C∗ is the partition formed by assigning k to a new table.
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Approximate inference with MCMC

For both models,

µ(C) = P (x1:n|C) =
∏
c∈C

m(xc) where m(xc) =

∫ ∏
i∈c

pθ(xi) dH(θ).

As usual, µ(C) can be computed analytically when H is a conjugate prior.

Gibbs sampling (MFM vs DPM)

Suppose C is the current partition, not including customer k.
Reseat customer k...

MFM DPM
at table c ∈ C with probability ∝ (|c|+ 1)κ(n, t)µ(Cc) |c|µ(Cc)

or at a new table with probability ∝ κ(n, t+ 1)µ(C∗) µ(C∗)

where

t = |C| is the number of occupied tables (excluding customer k),
Cc is the partition formed by assigning k to table c, and
C∗ is the partition formed by assigning k to a new table.
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Stick-breaking construction

Recall that S ∼ Poisson(λ) + 1 and π|S = s ∼ Dirichlets(α, . . . , α).
When α = 1, the marginal distribution of π is beautifully simple:

Stick-breaking for MFM (Poisson-Uniform case)

Let Y1, Y2, . . .
iid∼ Exponential(λ).

Let πk = min{Yk, 1−
∑k−1

i=1 πi} for k = 1, 2, . . . .

Then S := #{k : πk > 0} ∼ Poisson(λ) + 1
and (π1, . . . , πs)|S = s ∼ Dirichlets(1, . . . , 1).

In other words, we have the following stick-breaking construction:

Start with a stick of unit length.

Break off i.i.d. Exponential(λ) pieces until you run out of stick.

Note that this corresponds to a Poisson process on the unit interval.
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Open questions

1 Does “pruning” tiny DPM components result in consistency?

2 Does the DPM posterior of Tn diverge?
i.e. does PDPM(Tn = t |X1:n) always go to 0 for all t?

3 What rate of convergence do MFMs have for the mixing distribution?
. . . for the number of components?

4 How well do MFMs perform in practice, compared to DPMs?
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Additional material

Additional material
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Toy example #1: One normal component

Prior (x) of Tn, estimated posterior (o) of Tn, and estimated posterior (∗) of Tn,δ with δ = 0.01

Data: N (0, 1). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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Toy example #2: Two normal components

Prior (x) of Tn, estimated posterior (o) of Tn, and estimated posterior (∗) of Tn,δ with δ = 0.01

Data: 1
2
N (0, 1) + 1

2
N (6, 1). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.

J. W. Miller (Brown University) DPM inconsistency ICERM, September 17, 2012 39 / 40



Introduction A consistent alternative Demonstrations Results Examples MFM Properties Open questions

Toy example #3: Five normal components

Prior (x) of Tn, estimated posterior (o) of Tn, and estimated posterior (∗) of Tn,δ with δ = 0.01

Data:
2∑

k=−2

1
5
N (4k, 1

2
). Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.
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